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Oscillatory coupling between interfaces in metallic 
multilayers 
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Bs8 I, UK 

Received 29 June 1992. in final form 22 January 1993 

Abstract. We have developed a theory that views the loml energy of an anay of 
multilayers as a weighted average of bulk mntributions corrected by a slm of single- 
intedace and interface-interface interactions lerms We show that for metallic systems 
these interactions willale as functions ot the appropriate interface-interface separations. 
Furthermore, we demonslrate that they are due lo the Same quantum-mechanical 
property of a degenerate Fermi liquid in a localized external potential as that which 
gives rise to the Friedel charge and magnelic oscillation around an impurity and the 
mrresponding Rudeman-Kittel-Kasuya-Yoshida (w) interactions Wz argue that the 
recently discowed meillatoly magnetic mupling between magnetic layers separated & 
paramagnetic metallic layers should be accompanied by elastic interactions that &e rise 
lo periodic strain modulations, Aa/o, in the spacer layers. We illustrate Ule foregoing 
discussion by aplicit calculation on an inhomogeneous jellium model. 

1. Introduction 

The advent of highquality metallic multilayers [l, 21 provides a new context in which 
to study the metallic state. Indeed, one of the more striking features of these 
structures, namely the oscillatory coupling between magnetic layers in arrays where 
they are separated by nonmagnetic metals, relies for its existence on the electrons 
forming a degenerate Fermi liquid [3]. In this paper we wish to contribute to the 
understanding of these very interesting phenomena by developing a new point of view 
for in description. 

The systems we shall have in mind consist of alternate layers of two pure 
metals (A and B), which may be both paramagnetic, as illustrated in figure 1, or 
one paramagnetic (B) and the other ferromagnetic (A), as depicted in figure 2 
Experimentally well studied examples are Fe/Cr, Cn/Cr, C o R u  and R/Cu [2], to 
mention but a few. As was discovered by a number of groups 1461,  at temperatures 
where each ferromagnetic layer is spontaneously magnetized, the relative orientation 
of layers may be parallel or antiparallel. In fact it is found [7-101 that the coupling 
between the magnetic moments of the individual layers oscillates from ferromagnetic 
to antiferromagnetic as the thickness of the nonmagnetic (spacer) layer is varied. 
It is the physics of these oscillations that we. shall be concemed with here. A veery 

t Permanent addres: Dipartimento di Fisica, Univenild di Messina, Casella Postnle 50, Villaggio S &am, 
1-98166 Mmina, Italy. 
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general explanation of these phenomena is provided by the tight-binding model of 
Edwards e[ al [ll] and by the perturbative schemes of P Bruno and Chappert [12] 
and Coehoorn [13]. Although we agree with these interpretations, we shall rederive 
their basic conclusions by employing a different set of arguments. These, in our view, 
amplify certain important points and shed new light on the subject 

E Bruno and B L eo& 
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vk 

Figure 1. Model for a non-magnetic metallic Figure 2 Model for a magnetic metallic mullilayer. 
multilayer. l h e  volumes occupied ky the metals A m e  melais A and B are bunded by n planar 
and B are bounded bj 18 planar interfaces located interfaces located at lhe positions {Z,}. A 
at the pi t ions {Zj}. Corresponding lo each magnetic moment pointing up or down ir associated 
interIace, the potential varies by an amount Vo. with each layer of A VI (2) (full line) and VI ( z )  

(broken line) are the polenlials felt by mjorily 
and minority elect" ,  A is the magnetic exchange 
splitting of A. Note that blh lhe potentials have 
the " n o n  value Vo within the nonmagnetic 
layen B. 

The approach we wish to develop rests on regarding the above structures as 
systems of interacting interfaces. The thermodynamics of these are described in 
section 2. Our central result, there, will be the introduction of an interfacial grand 
potential y and a set of thermodynamic forces {j;), analogous to the solvation 
forces between surfaces immersed in liquids [14, U], conjugate to the positions of 
the interfaces {Z ; ) .  In section 3 we calculate these forces for simple models of 
two interfaces and show that they oscillate as a function of the separation. These 
oscillations will be Seen as a consequence of the well known charge cscillation 1161 
in an electron gas at a sudden potential jump such as occurs naturally at impurities, 
surfaces and interfaces. Furthermore, as shown in section 4, they can be decomposed 
into magnetic and non-magnetic components, each of which oscillates. We estimate 
the size of the total forces and conclude that it should lead to observable strain, 
A n l a ,  oscillations in the spacer layers. In the h a 1  section 5, we summarize our 
results and comment on the salient features of the problem. 

2. The thermodynamics of interface-interface interactions 

We model a multilayer as alternate slabs, of A and B metals, each slab having a 
thiclcness of several monolayers (figure 1). We assume the interfaces to be planar, 
but not necessarily sharp, each one located at the positions 2; (i = 1,. . . , n). The 
planes z = Zi are, then, Gibbs dividing surfaces for the multilayer 117. In the 
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following we consider the effect of ‘moving’ these interfaces: in the present context 
this has to be intended as the simple replacement of one kind of atom with the other, 
without any strain. We consider two different geometries, the periodic geometry 
(PG), in which the sequence Zi, . . . , 2, of the interfaces repeats periodically along 
the z direction, and the non-periodic one (NPG), in which one of the metals extends 
throughout the half-spaces, both on the left of Z, and on the right of Z,,. Whereas 
an epitaxial multilayer is periodic in z and y directions, with the same unit translation 
vectors as the bulk metals A or B, the periodicity along z is very different in PG (with 
unit translation vectors of many atomic lengths), and there is no periodicity at all 
in NPG. We consider a multilayer in thermal contact with a ‘reservoir of electrons’ 
at fixed temperature T and chemical potential p; consequently, the appropriate 
thermodynamic potential is the grand potential R. Evidently, in the present case, it 
also depends on the areas {A,] and locations {Zi) of the interfaces. Namely, 

= n ( T , V , ~ , t A i l , { Z i } )  @.la) 
and the second law of thermodynamics takes the following form: 

dR = S d T - p d V - N d p + ~ o ; d A i - ~ ( f ; A i ) d Z j  (22) 

where S is the entropy, p the pressure, V the total volume and N the total number 
of electrons. Clearly, the thermodynamic forces conjugate to {A;] and { Z ; }  are the 
surface tensions 

= (dR/dAi)T,V,p,{Aj,j;fi),{Z,) (2.3) 
associated with each interface, and, respectively, the force on each interface 

- (fi Ai) = ( d ! a / d Z i ) ~ , ~ . p , ~ A , } , ( ~ , , , ~ ~ )  (2.4) 

where the notation, using the force per unit area fi, explicitly indicates that these 
forces are proportional to A. We note that only n - 1 of the locations of the 
interfaces are truly independent, because the grand potential has to be invariant 
under the translation Z, -+ Zi + a. Thus, 

(2.lb) 

In other words, we will use the grand potential @.la) together with the constraint 
(2.lb) that will ensure that all the relations we are going to derive are invariant with 
respect to translations of the origin. 

Clearly, in (2.2), the term -(fiAi)dZi corresponds to the work done when 
the ith interface is displaced by an infinitesimal amount dZ,, keeping temperature, 
chemical potential, interface areas and the positions of all the other interfaces fixed; 
it is then due only to the interactions between interfaces, so we may regard them as 
the resultant of interfaceinterface (11) forces [16]. It is interesting to note that these 
forces are the extension to a quantum system with an arbitrary number of permeable 
interfaces of the concept of ‘solvation force’, already introduced in the study of 
adsorption for classical fluids confined between two impenetrable walls [14,15]. 

As is customary in the thermodynamic treatment of inhomogeneous materials, we 
define the excess grand potential [lS] 

( a R / a a )  = C(aR/aZ;) = - c ( f i A i )  = 0. 
i 

n, = R - !a,,,, = R - ( VAWA + VBWB) (25) 
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as the difference between the grand potential of the multilayer and SIbdk. This 
latter quantity is defined as the grand potential of a homogeneous system (Le. 

without interfaces) in which the metals A and B occupy the Same volumes V, and 
V, = V - V, as in the multilayer and have the same grand potential densities, 
wA = -p ,  and w, = -pB ,  as in the homogeneous metal. The differential of the 
grand potential excess can then be expressed in terms of surface excess quantities, 

E Bruno and B L @om 

dSI, = S, d T  - Nmdg + U; dA; - C ( f i A i ) d Z i  (2-6) 

where, with obvious notation, we introduced the entropy and the electron excesses 

s, = s - Sb",L = s - ( lis, t VBS,) 

N, = N - Nsulk = N - (VAn, + VBnB). 

(2.70) 

(2.7b) 

We now observe that the thermodynamic potential 

W = ( J  + x ( A ; f i ) Z i  

(U is the internal energy) is a first-order homogeneous function of the extensive 
variables S, V ,  N, {A;) and {Aifi}, and hence it is straightfonvard to show [14,19] 
that the following generalized equation of state [20] holds: 

w = TS - p ~  + p ~  + C u ~ A ;  + z ( A j f i ) Z ; .  
i 

Furthermore, the Legendre transformations from W to U, R and SI, lend to the 
following strikingly simple relations: 

U = TS - p~ + @N + u i ~ i  (2.W 

Moreover, from (2.6) and (2.&), using Ai = A for all i, we find the Gibbs equation 

dy=-(S,, /A)dT- (N,,/A)dp t Z f i d Z i  0.9) 
i 

where y = E;.;. The total surface tension y turns out to be the most natural 
thermodynamic potential for the problem. Evidently it is closely related to the 11 
forces. In fact, it follows from (29) that 

f i  = -(d-f/d zi )T,@,A,{Zj,j#i) ' (2.10) 

?b proceed further with our analysis for our inhomogeneous jellium model, we 

(2 1 la) 

move all the interfaces according to the scaling relation 

zi = A t i .  
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Note that this procedure leaves unchanged all the areas, while the vulumes occupied 
by the two metals change according to 

VA = AV: VB = AV$ (2.116) 

for the PG, and 

VB = XV,U VA = v - VB = v - AV; (2.114 

for the NPG (in the latter case the total volume V remains unchanged). As a 
consequence, from equations (2.5) and (28) we have 

n(x) = A'Y(A) + [ P A ~ A ( ~ )  + pBvB(X)I 

and, making use of (2.11), we find, in the case of PG, 

and, in the case of NPG, 

where 

pt(X) = -(l/A)(dR/dA) (214) 

is the pressure of the multilayered systems. Clearly, the term Ci fiti = -(dy/dA) 
should be regarded as an extra pressure due to the interface-interface interactions 

After an integration over A, we obtain the central result of this paper, for the PG 
(Ill). 

and the NPG, respectively 

It can be easily seen, by taking the X -+ 00 limit, that the excess grand potential 
per unit area y(A) is the sum of two different contributions, - / (CO),  the total surface 
tension when all the interfaces are infinitely apart from one another, and an excess 
term, which we attribute to the 111. Naturally this latter contribution goes to zero when 
X goes to infinity. Consequently we can define the 111 part of the grand potential as 

%(A) = A[7(A) - ~ ( 0 3 ) l .  (2.16) 

As we shall see in the following sections, R, contains all the contributions that give 
rise to the much studied oscillatoly coupling in multilayers. In summary 

R = Ob,,, + A-/(co)  + RD. (217) 
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An important aspect of the above conceptual framework is that it leads to some 
remarkably simple and suggestive formulae even for a fully interacting electron system. 
Using the language of the density-functional theory [21] we show, in appendix 1, that 

J rn(r)- av(T) 
ax - p + ( X ) =  - d 

A (2.18) 

where n(+) is the charge density in the inhomogeneous ground state. Moreover, in 
the very important case in which the external potential V ( r )  has a finite range and 
all the distances between the interfaces are larger than this, an increase of X results 
only in a solid shift of the external potential, whose A derivative can then be easily 
expressed in terms of the z derivative. We merely quote here, as an example, the 
result for a two-interface system (note that the origin of the z axis is chosen, as in 
figure 3, to be halfway between the interfaces) 

Since the derivative of the external potential is large only in the interfacial regions, 
(2.19), as well as (218), consists mainly of contributions from the charge density in 
these regions. Clearly this is fully consistent with our interpretation of pt(X) as due 
to interfaceinterface interactions. 

3. Simple hvo-interface models 

3.1. One-dimensional model 
Before embarking on realistic first-principles calculations of the 11 forces introduced 
above, it is worth while to explore, in detail, the oscillatory coupling between layers 
by explicit calculations for simple inhomogeneous jellium models. 

The simplest possible model of interest is that in which the junction between 
the metals A and B is described as a finite discontinuity of the external potential 
(figure 3), which we chose to be the difference between the work functions of the 
two metals. That is to say 

for -t < z < -Lf2, Lf2 < z < t 
for -LIZ < z < Lf2. 

Namely, the metal A occupies the regions in which the external potential is mro, and 
B that in which the potential has the constant value Vu. All the space is filled by 
a one-dimensional (ID) electron gas, in thermal contact with a reservoir of electrons 
(see section 2). Later we will take the limit .1 + 00. Note that the present sandwich 
model is formally equivalent to considering the metal B as a single (atomic) ‘impuriy’ 
in the infinite medium A. Most of the results of the present section may easily be 
generalized to the case of an arbitrary number of such ‘impurities’ described by finite- 
ranged potentials. Clearly, a periodic arrangement of these can be thought of as a 
model for multilayers. 

Following the well !mown idea of Friedel [22] we will consider the difference, for 
each spin, between the grand potential Cl of the sandwich and R,, which corresponds 
to a reference system without impurities, Le. the pure A metal. At zero temperature, 
we find that 
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1 2 

FIgure 3 Model far a hvo-interface non-magnetic 
melallic multilayer. The interfaces are marked ty 1 
and 2 and located al z = i L / 2 .  Corresponding to 
each inlerface. lhe external polenlial V ( z )  wries -t - L12 Ll2 

z by an  amount Vo. 

where nu(E) = (27r,/E)-' is the 1D free-electron density of states (DOS), EF the 
Fermi energy and 

n ( E , z )  = - ( l /n ) ImQ{G(E,z ,z )}  0.3) 
is the diagonal part of the electronic density matrix for the  multilayer and is given 
in terms of the one-electron Green function G( E, z ,  2). In equation (3.2) Rbavnd 
takes into account possible contributions from bound states, R' and S I ;  are, for the 
multilayer and the homogeneous metal A, the interacting part of the grand potential 
for the multilayer and the homogeneous metal 4 respectively. 'Ib find G( E, z ,  2') we 
use the one-dimensional scattering theory of Butler [23,24]. In this the wavefunction 
is expanded in terms of its symmetric and antisymmetric components labelled by the 
pseudo-angular-momentum index 1 = 0 and 1 = 1 respectively. Then the solutions of 
the Schrodinger equation are described by the pseudo-radial functions RI(  z ,  E) and 
the corresponding phase shifts 6,(E). For further details the reader is referred to 
[a] and [24] and to appendix 2 The main result from the above theory is 

R f ( z ,  E ) K 2 ( z )  
T J E  

n( E ,  2) = n,( E ,  z) = 
1 1 

Using theorem A2.2 (A:( E) = (7r,/E)-'), we find that 

[ n t ( E , z ) -  $ n o ( E ) ] d z  = -- n d E  6 , ( E ) .  
' 

(3.4) 

(3.5) 

If now we choose, for each value of 1 and E, 1, large enough to have n( E, 2) - 
nu(E)  = 0, for IzI > 1,,, equation (3.2) can be rewritten as 

where for V, < 0 the contribution from bound states, Rhound, also has to be 
considered. In that case it turns out to be 

n, 
R2bouod = - ( EF - (3.7) 

1=1 
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with 

nmX = 1 + Int(LJ(-Vu)). 

Evidently the above result is the onedimensional analogue of the celebrated Friedel 
sum 12.51. 

Using the explicit expression for the phase shifts given in appendix 3 and 
identifying the terms proportional to wA and wB, the excess grand potential (2.5) 
for the present model may be written as 

2 kP 
R,(L) =--J  d k k g ( k ) + A R , , , , ( L ) + A n ' ( L )  ( 3 4  = o  

where kp is the Fermi momentum, and 

- LJ(k ' -&)+m*  (3.9) 
is the sum over the phase shifts with a contribution linear in L subtracted. We stress 
that g ( k )  is a continuous function of both k and L and the integer ?n is chosen to 
e w r e  continuity (see appendix 3). Under these conditions 

where 0 is the Heaviside function and 

A n (  L )  = R'( L )  - i2&k. (3.11) 

3.2. A rhree-dimensional inhomogeneous jellium model 

We note with considerable interest that this model is no more difficult to solve, either 
analytically or computationally, than the genuinely onedimensional model described 
above. It consists of a three-dimensional external potential, which is, however, a 
constant in the x and y directions. Such a model, already investigated extensively 
for the singleinterface problem [16,26,m, will be referred to in the following as the 
inhomogeneous jellium. 

For the time being we neglect the electronelectron interactions and study the 
solutions of the Schrddinger equation 

(3.12) - O Z T q X , Y ,  z )  = [ E  - Wz)llo(x, Y, 2). 
Evidently, the eigenvalues are 

E Q , ~ ,  = Q2 +e (3.13) 

and the corresponding eigenfunctions may be factorized as 
G Q , k , ( + ? y ,  = X Q ( R ) + k , ( z )  (3.14) 

where for the two-dimensional wavevector Q = ( k , , k , )  and position vector 
R = (x,  Y) 

xQ(@ = e  iQ.R (3.15) 
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and 4k2 (z) is the solution of the ID Schradinger equation 

(3.16) 
dZ 

dz2 - -4 '(Z) = [kf - V b ) M k ' ( z ) .  

For the present model the density matrix can  be evaluated through the formula 

where m is the quantum number labelling, when appropriate, states bounded along 
the z direction. After integration over Q, using the fact that the external potential is 
an even function of z ,  we find 

where the contribution coming from bound states is given by 

On integration Over the energy, one is led to the expression for the charge density, 
which for metallic systems ( EF > 0) is 

Then, using the density of states per unit volume 

n( E )  = Jdz  n( E, z )  

the T = 0 grand potential is 

(3.1%) 

(3.20) 

R = A & E ( E F  - E)O(EF - l 3 ) J d . z  n( E, z )  + R' (3.21) 

where A is the area normal to the z direction. Following the 1D discussion in 
the previous subsection, the difference between R and the grand potential of the 
homogeneous metal A may be written as 

I 

EF 
R - nu = A A dz [n,( E ,  z )  - nu( E ) ]  + abound + R' - (3.22) 

where n,( E, z )  is the valence part of the density matrix, Le. n( E, z )  - n,,,( E, z). 
Since the relevant solutions for IzI > L/2 of equation (3.16) can be written in terms 
of the ID solutions of the previous subsection, namely 

h , ( z )  = fix R, (m) yl(z) 
I 
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and the homogeneous DOS n,(E) = -/(47r), we may again use theorem A22 to 
write 

E Bruno and B L Gyof i  

Thus the 3D analogue of the result in equation (3.6) is 

As in section 3.1, equation (A3.3) implies 

d k ( k 2  - k $ ) k g ( k )  + AR,,,, + A n ‘  (3.24) 

where 

This is the principal result of this section. Clearly it is an easy-toevaluate, exact, 
non-interacting-electron formula for investigating the 11 interactions defined in section 
2. It should be noted that equation (3.24), as opposed to equation (3.6), was not 
derived for a single ‘impurity’ but for a ‘plane of impurities’, and, therefore, it is a 
non-trivial generalization of the Friedel theorem. An expression similar to (3.24) was 
already derived by Sugiyama [ZS] for the excess energy in a single-interface model 
within a Thomas-Fermi approximation. 

4. The oscillatory contribution to the interfaceinterface forces 

4.1. General considerations 

An interesting confirmation of the vely general, thermodynamic, arguments in section 
2 follows hom explicit calculations for the simple models of two interfaces discussed 
in section 3. Evidently, without any reference to section 2, the total force per unit 
area between two interfaces, separated by a spacer layer of thickness L, may be 
defined as 

p&(L) = - (I /A)(dR/aL).  (4.1) 

For the two models of interest, using equations (3.6) and (3.23), for the case in which 
Vu > 0, we find 

and 

a 
d E (  E - Ep)- E 6 , ( E )  

a L  I 
(4.3) 
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respectively. We now note, and show in appendix 4, that 

and hence for the onedimensional as well as the three-dimensional jellium 

where we have used equations (3.4), (3.1%) and (3.22) to identify the appropriate 
expressions for the charge density n(z), which clearly depends parametrically on the 
separation L.  

That the present, explicitly quantum-mechanical, derivation yields equation (4.5) 
in agreement with equation (218) supports our conclusions in section 2 concerning 
the generality of equation (2.18). Namely, the simple classical solvation force formula 
[ I S ] ,  equation (2.18), remains valid in a fully quantum-mechanical treatment of the 
electron liquid. 

Although equation (4.5) is valid for arbitrarily shaped potentials V(z),  we now 
wish to focus on rigidly shifting sudden jumps as in figure 3. In this case equation 
(4.5) further simplifies to 

P : z ( L ) = - z  'V[n(-L/2)+n(L/2)] U = -V ,n(L/2)  (4.6) 
where we used the symmetry that n(z) = n(-2). Recalling that the charge density 
at a semi-infinite jellium undergoes characteristic Friedel oscillation at the surface 
[U,%], it is tempting to suppose that the total force p + (  L )  in equation (4.6) should 
oscillate as a function of L. In short, the oscillations originating at one interface 
reach the other with a phase that varies with L. As we shall now demonstrate, this 
effect gives rise to a variety of interesting oscillatory phenomena. 

Indeed, coming hack to the theory of section 2, from equation (2.136) putting el = -1/2 and Ez = 1/2, since fi + fi = 0, we obtain 

P k ( L )  =- f l (L)+  (pB- P A )  = f Z ( L )  + (!)B-PA). (4.7) 
Therefore, we can distinguish in p c (  L)  an L-independent contribution, which is the 
difference between the pressures of the B and A bulk metals, and an Ldependent 
term, the interface-interface force, which is, thus, responsible for the oscillations. 

4.2 Oscilfatoiy contributions to the e r c m  grand potential 

We have evaluated the formula for O,(L) given in equations (3.8), for a one- 
dimensional, and (3.24), for the three-dimensional non-interacting jellium models. 
The results are shown in figures 4(a) and 5(a)  as functions of L. XI emphasize 
their principal feature, namely the oscillations, we have subtracted from each curve a 
constant background, which, according to equation (216), is proportional to the sum 
of the surface tensions when L -+ M. 

Evidently the above Ldependent contribution can be regarded as the interface- 
interface interaction grand potential nu( L )  given in equation (2.16). Indeed, if we 
evaluate 01,( L )  using 

PL 
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-? 
U 
2 
E 

0.80 

0.40 

0.00 

-0.40 ‘ J 

0 10 20 30 40 

- 1 .oo ” I 
0 1 0  20 30 40 

L (atomic units) 

Figure 4. (U) Interfac€-interface interactions I&l(L) for the ID model with V, = 
-0.08 w d  and spacer Fermi energies EF = 0.36 Ryd (full curve) and Ep = 0.46 Ih/d 
(broken cuwe). ?he abscissa shows the spacer lhickness L. (b) Tne it force f for the 
Same systems as in (a). All Ihe quantities aR plotted in alomic unils. 

and the formulae for the 11 forces, &en in equations (4.6) and (4.7). we find perfect 
agreement with the above direct calculations using the appropriate forms of the 
Friedel sum. This demonstrates that, as expected, the oscillatory contribution in the 
grand potential is due to the 11 force f( L). These are displayed in figures 4(6) and 

TO sum up, the interaction gand potential, as well as the force between the 
interfaces, p i (  L )  or f( L), oscillates because the charge densities at the interface 
n ( L / 2 )  = n( -L /2 )  oscillate. ‘The origin of the latter is the same as that of Friedel 

5(4 
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m 
I? 

a 
a 
3 

? m 

x 

I 

Lc 

I I 

0 i o  20 30 40 

I 

0 i o  20 30 40 

L (atomic units) 

Figure 5. (a) Interface-interface interactions per unit area f i l l (  r the 
inhomogeneous jellium model with Vo = -0.08 Ryd and EF = 0.36 I 
and EF = 0.46 Ryd pmken curve). me abscissa shows the spacer tl 

“e) 

’+ (b) 
n e  11 force f for the same multilayers as in (U). Observe the taster decrease ct both 
lhe grand potential excess and the I1 force with respect 10 the ID model (figure 4). 

oscillations of charge around an impurity. To make this point quite explicitly, we 
studied the asymptotic forms of the integral representations 

kF 
niD(L/2) = ‘1 d k [ c o s 2 ( k L / 2 +  6,) +cns2(kL/2  - 11/2+ S,)] (4.94 

= U  

1 l.P 

n 3D ( L / 2 )  = d k ( @  - k z ) [ m s 2 ( k L / 2  + 6,) + c n s 2 ( k l / 2  - r / 2  + a,)] 
U 
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( 4 W  
that follow from equations (3.4) and (3.19). For the sake of clarity, here and in the 
following subsection, we measure the energy from the spacer potential level V,. The 
asymptotic behaviours of equations (4.9) are dominated by the presence of an upper 
limit of intemation. k,. We omit the aleebra, which follows closelv the straiehtfonvard 
method by sgh th i l  (291, and merely the results for the .idepend&t pm of 
nLD(L/2) and dD( L p ) :  

Allowing for the difference between the geometries of planar interfaces and point 
defects respectively, these charge densities are very similar to those one finds in 
standard discussions 1301 of Friedel oscillations about impurities in metals. The main 
difference is the L dependence of the phase shifts, i.e. the 'size' of a defect, which is 
not a point. This connection clarifies that the origin of the oscillations is the nature 
of the Wrmi sea; namely, the existence of a Fermi surface that separates occupied 
and unoccupied plane-wave states. That is to say, they are a fundamental property 
of the metallic state. An interesting version of similar oscillations in semiconductors 
has been studied by Cheng d ai [31]. 

Given the above compelling simple picture of how the oscillations arise, it is 
surprising to find that there is an alternative, equally simple, description of them. For 
clarity we shall deal with the three-dimensional case only. Using the result, derived 
in appendix 3, that for our model the Friedel sum is given by 

a"( E )  t 61( E) = - L d (  E + V U) 

we note that the integrand in equation (3.23) oscillates about the difference between 
the freeelectron integrated density of states of the two metals NB( E )  - NA( E). 
Following the argument in appendix 3, the root cause of these oscillations is simply 
the resonant increase of the phase shifts, 6,(k) and 6 , ( k ) ,  through the resonant 
energies given by kL = ( n  t 1/2)a. These moving ahead and then falling behind 
at each resonant energy, as shown in figure 6, can be identified as the cause of 
the oscillatory contribution i&(L). Although this explanation appears to be quite 
different from our previous arguments, which involved the interfaceinterface forces, 
clearly, it describes the same effect. For clarity and latter reference we add that, 
in order to have visible differences, in figure 6 we used a potential well with a step 
more than one order of magnitude larger than any realistic one. The point is that 
interface-interface forces are a subtle effect coming from tiny differences from the 
bulk behaviour. That is to say, their energy scale is much smaller than the scale of 
bulk energies and even of the surface tensions in the L i 03 limit. 

In the next subsection, where we shall study a magnetic version of the present 
model, the above two faces of the same coin will turn out to be very weful in making 
contact with results by other authors on the same subject. 
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L k , l n  

Figure6 PlotoftheFriedel sumg(k1)  = [ 6 0 ( k 1 ) + 6 , ( k 1 ) - 6 ~ ( k ,  =0)-61(81 =a]/= 
(full a w e )  versus Lkt l l r ,  where kl = J ( E -  VO) is the spacer momentum and L the 
separation between the interfaces, for a non-magnelic monolayer with lwo interfaces. Vo 
is chosen U) be 2 Ryd, the sepaialion between the interfam is L = 10 au. ?be dotted 
a w e  represents the bulk mnlribulion [ f ( k J  - f ( k l  = O ) ] / T  after equation (A3.5). 
Note that in order to have a visible difference telween the WO c u m  we have chosen 
a wry high d u e  for Vo. 

Before moving on to discussions of magnetic models of experimental interest, ue 
wish m make one final remark concerning the interfaceinterface force point of view 
developed in this section. Because pt( L) is actually a uniaxial pressure in the spacer 
layer, it is reasonable to assume that an oscillating pressure will lead m systematic 
variation with L of the lattice parameter a. Namely we stpect that the strain, Aula ,  
will oscillate according to the formula 

A a / a  = [1/(3B)]V,n(h/2) (4.12) 

where B is the uniaxial elastic (bulk) modulus. In the next subsection we shall give 
quantitative estimates of this effect. 

4.3. Magnetic coupling across a non-magnetic spacer layer 
Interestingly, some useful insights into the origin of magnetic coupling in metallic 
multilayers can be obtained from a simple modification of the above calculations. We 
imagine that, in the magnetic layers, the majority and minority electrons feel different, 
exchange-split potentials, while in the nonmagnetic spacer layer B they move in the 
same potential V, as depicted in figure 7. Namely, 

where A is the magnetic exchange splitting of the metal A and V, is the 'spin- 
averaged jump', which can be assumed equal to the difference between the work 
functions of A and B (W, - WB). 
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1 2 

Figure 7. Model for a two-intertace 
magnetic metallic multilayer, m the 
mnRguration in which L e  magnetic 
momenll are pardllel. The interlaas 
are marked bj I and 2 and located 
at I = &LIZ. V,(x)  (full line) 
and Vi( L) proken line) have the Fame 
meaning as m Sgure 2, A is the magnetic 
exchange splilting of A Nore that tolh 
the potentials have the mmmon value Vo 
wilhin lhe nonmagnetic layer E. 

In a one-electron theory, the grand potential of the multilayer is simply the sum 

(4.14) 

Each subsystem is described by the potential well in equation (3.1) and we can use 
all the results of the previous sections. In particular, from equations (4.6) and (4.7) 
we obtain that the I I  forces, forgetting about non-oscillatory terms, are given by 

of those of the two non-interacting subsystems of spin-up and spin-down electrons: 

n = or + ",. 

fi = -fz= (l /A)(~R/BL)rr(VU-A/2)nT(L/2) +(vu+A/2)n,(L/2)  
= Von(L/2) - (A/2)m(L/2) (4.15) 

where nT(&)( L/2) is the spin-up (down) electronic density at the interfaces and 

(4.16) 

(4.173 

a,( L )  = Ql")( L) + oh"'( L) (4.18~) 

where we have distinguished charge (a) and magnetic (m) contributions to be 
calculated using 

1 
-CL',")( L )  = V, 1 dX n( X/2) 

L 
(4.186) 

A m 

(4.18~) 

The argument for this, rather natural, separation of what appear to be electrostatic 
and magnetic contributions, and which is illustrated in figure 8, becomes even more 
compelling if we realize that, in the limit where the interfaces are infinitely far apart, 
equation (4.18C) agrees with the conventional definition of magnetic coupling [Ill for 
the geometry considered here. The latter is the difference between the grand potential 
in the configuration in which the magnetic moments of the adjacent magnetic layers 
are parallel ( T T )  as in figure 7 and that in which they are antiparallel (TJ)  as in 
figure 9. Namely, it is defined to be [Il l  

A J  = "( rc  - ~ ( T L ) .  
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The important pint we wish to make is that, as shown in appendix 5, the difference 

(4.19) 

vanishes exponentially as the spacer thickness increases. Moreover, we note that this 
difference is exactly zero in the special cases in which A = 0 or V, = 0. Note that, 
while for transition-metal pairs V, is small 1 ev), for transition-metavnoble-metal 
pairs it is comparable with A [32]. 

2fll,m)(L) - IQ(t,,(L) - fi(,L)(L)I 

75 

50 

25 

0 

-25 
0 10 20 30 40 

L (atomic units) 
Figure S Acmrding lo equalion (4.18), lhe total 111 pi- unit area RII(L)/A (full NIW) 

is decomposed into electrostatic Rip)(L)/A (broken curve) and magnetic Rip)(L)/A 
(dotted curve) contributions, for the inhomogeneous jellium magnetic model, with 
V, = -0.22 Ryd, A = 0.16 Ryd, spacer EF = 0.50 Ryd. ?he abscissa show the 
spacer thickness L. 

Thus in equation (4.18~) describes an oscillatory coupling between two 
semi-infinite magnetic metals separated by a nonmagnetic spacer layer. The spatial 
periodicity of this coupling is IC;', which is not what is observed in experiments 
on magnetic multilayers where k;' L* a, the lattice. parameter. However, this 
discrepancy is a simple artifact of our model, which replaces the ions by uniform 
positively charged backgrounds. In short, we suggest that equation (4.18) correctly 
identifies the mechanism of oscillatory magnetic coupling, and if implemented for a 
more realistic lattice model it would give oscillations of the obsewed period [13]. 
Moreover, we conclude that in general there will be both electrostatic and magnetic 
forces communicated across the spacer layers and they both oscillate. 

Although the above model is very crude, it has a number of interesting quantitative 
consequences. Using the work-function difference WFe - WO = 0 [32] and the 
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Figure 9. Model for a two-inlerface magnetic 
metallic multilayer, in rhe configuration in 
which the magnetic momenu are antiparallel 
(1  I ) .  The interfaces are marked by I and 2 
V,(r) (full line), V , ( r )  (broken line), V, and 
A have the same meanings m m figure 2 

__.____________ Kp, 
2 

L-..- ..-...-.--. 
v4 

exchange splitting of Fe (A rr 2 ev) we have calculated ni," and the 11 force for the 
(Fe),(Cu), system, studied by Heinrich CI a1 [SI. The results are shown in figure 10. 
Surprisingly, for a separation of about 10 monolayers (or 26.5 au) we obtain a peak 
in C$'/A whose height is N 0.12 erg cm-', which is to be compared with the 
experimental value [SI of 0.22 erg The encouraging results emboldened us to 
estimate the total force, which we find to be f and the strain 
A n l a .  This latter works out to be 2 x Much larger effects should occur at 
smaller separations; for instance, at 3.4 au we find f rr 1.7 x Ryd a r 2 ,  which 
corresponds to A a l a  N 6 x such a large deformation should be observable in 
highquality x-ray measurements. 

6 x lo7 erg 

5. Conclusions and mmments 

We have introduced the idea of interface-interface forces to describe that part of the 
grand potential of a multilayer system which depends on the layer thicknesses. We 
showed that, just as the Friedel oscillations of charge and magnetization around an 
impurity give rise to Ruderman-Kittel-Kasuya-Yoshida (RKKY) forces that oscillate 
as a function of the spatial separation between the impurities, the well known 
[16,26] analogous charge and magnetization oscillations due to surfaces and interfaces 
give rise to oscillatory coupling between interfaces. We demonstrated by explicit 
calculations for the two interfaces marked by 1 and 2 in figure 3 that the oscillatory 
contribution to the total free energy comes from nII(L),  in equation (2.16), which 
is, as shown by equation (2.15a), the work done against the interfaceinterface force 
f ( L )  in bringing the interfaces 1 and 2 together from infinite separation ( L  = co) 
to a finite distance L. 

As shown in section 4.2 the above view leads naturally to an explanation for the 
oscillatory magnetic coupling in systems of alternating magnetic and non-magnetic 
layers. Although the physical mechanism of this interaction is the same as has been 
identified in the theories of Edwards and Mathon [3,11] or in that of Coehoorn (131, 
the present formalism highlights a feature of the problem that has not been commented 
upon before. Namely, it makes it clear that, in general, the oscillatory magnetic coupling 
is accompanied by similar oscillatory electrostatic interactions and that the two together 
will lead to uniaxial strains that oscillate with the thicknesses of the spacer layers. We 
estimated the amplitude of these oscillation to be observable: A a / a  U 2 x in the 
Cu spacer layer of the (Cu),(Fe),, multilayer system. Evidently, observations of this 
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Figure 10. (0) Magnetic 111 F r  "nil area Oi;")(L)/A plolted versus tile spacer thickness 
L for the inhomogeneous jellium model of FeICu multilayer (Vo = 0, A = 0.16 Fqd, 
spacer EF = 0.36 Ryd). Nole that, &cause lhe 'averaged jump' is actually zem, according 
to equalion (4.18) there is now no electmstatic mntrihution to the It inlemcrions and 
forces (b) The 11 force f versus spacer thickness L for lhe same FdCu model as in (U). 

effect would be a strong confirmation of the general mechanism described in this paper, 
and therefore it is very tempting to interpret the recent experimental results by Kyuno et 
a1 [33] as evidence for such strain oscillations. It is also very interesting to observe here 
that the strains in Si-C polytypes were explained by Cheng et a1 [31] in terms of quantum 
forces between the atoms of the chain, in a manner very similar to the I1  forces in the 
above discussion. Remarkably these forces are due, in part, to the 'remnant' of Friedel 
oscillations that is known to occur in semiconductors [-U]. 
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In addition to the above brief summary of the main results, a number of comments 
are in order: 

(i) The forces defined in equation (218) are a simple example of the more general 
quantum-mechanical stress tensor discussed by Nielsen and Martin [35]. In this 
connection we observe that the calculation of these forces and their integration, as in 
equation (215), to find the interface-interface grand potential n, is numerically much 
more stable than the direct evaluation of R, because of the different scales of energies 
that are involved, as we remarked towards the end of section 4.2. This suggests that 
in realistic, first-principles calculations for multilayer systems, the present interface- 
interface approach may have considerable advantages over the standard total energy 
methods (211. 

(ii) Another point of general interest concerns the insensitivity of the oscillatory 
results to the shape of the interface potential V ( z )  in equation (218). As shown 
in appendix 6 the force (dR/dL)/A depends only on the wavefunction and its 
derivative at the geometrical centre of the interface, &(O) and #(O), regardless of the 
functional dependence of the potential on z. This feature of the results suggests that 
the experimentally unavoidable roughness of the interfaces need not have deleterious 
effects on the oscillatory coupling between them, provided they remain reasonably 
well localized. 

(iu) Somewhat similar remarks apply to the mnsequences of taking into a m u n t  
the electron-electron interactions. As is well hown charge oscillations at the surfaces 
of a jellium model are generic features of a fully interacting electronic system 116,261. 
The other central result on which our arguments were based, namely the Friedel sum, 
also remains valid in a strongly interacting electron liquid [q. Indeed, following the 
arguments leading to the local Fermi liquid theory of NoziBres I.%]. it is easy to envision 
that the mcillatory coupling we have discussed would be generic properties of the 
metallic state. 

(iv) Finally we must refer to the problem of generalizing the approach in order to 
treat proper atomistic models. Evidently the conceptual framework of the interfa- 
interface forces can be readily developed in the language of density-functional theory 
and their calculation may be implemented within the local-density approximation 
using 'band-theory' methods such as Koninga-Kohn-Rostoker (KKR), linear muffin- 
tin orbitals (LMTO), etc We hope to present such calculations in the not-too-distant 
future. However, there is a qualitative new feature of this model that may be 
mentioned here. This arises because the interfaceinterface distance L can change 
only in steps governed by the addition of monolayers. As is clear from figure 5 for the 
inhomogeneous jellium model, the periodiciiy of the 11 interactions is k;' and this is 
inconsistent with the much larger periods (rz 12 A) observed in the experiments [3,8]. 
However, the entry of step size, the lattice parameter CL, into the problem suggests a 
simple way out of the dilemma. By evaluating the rapidly varying function L) in 
equation (4.1) at discrete distances L. = nn, where n is incommensurate with k;', it 
returns to its former value only after a change AL. rz (a-' - kF)-I, which can easily 
be as large as Sa or 10n. "hiis argument has been developed in quantitative details 
by Coehoorn 1131 and hence we need not dwell on it further. 
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Appendix I. The derivative of the grand potential with respect to the external 
potential 

In the context of density-functional theory we o n  evaluate the functional derivative 
of the grand potential with respect to the external potential V ( T )  as follows: 

where the first derivative on the RHS is evaluated keeping the charge density fixed at 
the value fi(r) for which the unique functional 0 [ n ]  is minimum. Corresponding to 
this minimum 

6n/bV2(T) = 0 

and hence the integral on the RHs of (A1.l) vanishes. Now we note that 

0 = dT(V(T)  - P]n(T)  + Fin(?')] 

where F [ n ]  is a universal functional of n ( ~ ) .  Thus 

I 
6 0 / 6 v ( ~ )  = n ( ~ )  

as in classical density-functional theories for liquids [37]. 

(A1.2) 

(A1.3) 

Appendix 2. Some a c t  results on onedimensional wavefunctions 

These are  the one-dimensional analogues of those by Friedel [22]. In short, we 
shall consider two theorems satisfied by any solution ' J ) E ( ~ : )  of the ID Schrodinger 
equation 

dZ - --rI, 
dx2 E 

(I) = [ E -  V ( I ) ] ( i I E ( I )  

with a potential satisfying the mufin-tin condition 

V ( I )  = 0 for 1x1 > zm. W-2) 

It will be convenient if we think of @€(I) as given by the linear combination [23] 
of its symmetric, &(x ,  E), and antisymmetric, &(z, E), parts as follows: 
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7heorem A21. Let @€(I) be any real eigenfunction of the Schrodinger equation 
(A2.1) whose eigenvalue E lies in the continuum spectrum. It follows (here and in 
the following we denote with a prime the differentiation with respect to z) that 

E Bruno and B L Gyom 

Boo& Consider the solutions corresponding to the two eigenvalues E k AE 

- @ l t . * t a ~ ( ~ )  = [ E  f A E -  V(~) I@E*AE(Z) .  

Multiplying the equation corresponding to E + A E  by and that 
corresponding to E - A E  by @E+AE(z) ,  subtracting one from the other, and 
integrating from a to 6 one has 

- dr [@E-AE(z)s$+AE(z) - q)E+AE(z)(l)k-AE(x)l 

The theorem follows on integrating by parts the LHs, then expanding in Taylor series 
around E, dividing by A E  and taking the A E  + 0 limit. 

Theorem A2.2. For any real solution 

@ E , I ( ~ )  = A,(E)R,(z ,E)Yl(z)  for I4 > ZW 

belonging to the continuum spectrum of the ID Schrodinger equation (A21) with a 
potential satisfying the muffin-tin condition (A2.2), there exists an infinite number of 
lengths 

tm = [7m~-261(E)] / (2JE) > ZW (A24 
for which 

&oaf. Using theorem A2.1, equations (A2.4) and (A2.5), 8 t,, > Q ~ ,  we have 

and then if we chose t,, as in (A2.8) the sine term vanishes and the theorem follows. 

Appendix 3. The one-dimensional phase sh im 

Analytical expressions for the one-dimensional phase shifts for the potential well (3.1) 
can be obtained by standard methods [24]. We merely quote here the results 

etis, = a / (  I - ib) ezi61 = a/( 1 + ib) (A34 
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where 

a = Le-ikoL 2 [Z a( k, L )  t i a  sin( k ,  L)] 

Q = k l / k u  + ku/k ,  
k , = J E  k , = J ( E - V u ) .  

b = $sin( k, L) 
p = k , /ku  - ku/k I  

The expressions for the phase shifts are completely determined by the requirement 
of continuity and by the additional conditions that 1231 

lim a,( E) = 0 
E-U E-O 

lim &,(E)  = ?r/2 

for Vu > 0 or, for V, < 0, 

lim 6,( E) = 0 E-rll lim a,( E) = ~ / 2 .  
v,-U E-U 

Furthermore, some straightforward algebraic manipulations yield the following 

6, (E)+6, (E)  = - k , L + t a n - ' [ f o l t a n ( ~ , L ) ] + ? r ~ ~ / 2  (A3.3) 

where the integers m are  completely determined by (A3.2) and the continuity 
condition. The behaviour of the Friedel sum is mainly determined by the jumps 
of tan(k,L). These occur when 

k , L  = ( n +  1/2)7r. (AZ.4) 

The important thing to note is that, owing to the continuity conditions, when (A3.4) 
is satisfied m in (A3.3) must be incremented by 1. Consequently, the Friedel sum 
oscillates around the function 

f ( E ) = ( ~ , - k u ) L + ( m u + 1 / 2 ) r r  (A3.5) 

(mu is an integer to be chosen according to the conditions (A3.2)) crossing it each 
time (A3.4) is satisfied. This behaviour is displayed in figure 6. 

form of the Friedel sum: 

Appendix 4. An alternative derivation of equation (2.18) for the one-dimensional and 
the inhomogeneous jellium models 

In section 2, using a very general procedure, we derived a relation, namely equation 
(218), that allows the practical calculation of 11 forces, and, then, of 11 interactions. 
We will show in this appendix that the same relation can also be obtained within 
the framework of the scattering theory, for both the 1D and the inhomogeneous 
jellium two-interface models, provided the external potential V (  z )  has finite range, 
i.e. satisfies the condition in equation (A2.2). 

For the sake of simplicity, we suppose here that there are no states bounded in 
the z direction. The multilayer pressure, defined in equation (2.14), can be obtained 
by deriving equations (3.6) and (3.23) with respect to the spacer thickness L, for the 
ID and the inhomogeneous jellium models, respectively. In fact, the homogeneous 
term nu does not depend on L, and, since in the present case the condition ( M . 2 )  
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holds, the phase shifts at zero energy also do not depend on the spacer thickness and 
we obtain 
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for the ID model, and 

a 
d E ( E -  E F ) n x 6 1 ( E )  

I 

(A4.1) 

(A4.2) 

for the inhomogeneous jellium. It is more convenient to rewrite the last equation as 
an integral over the momentum k = E'/*,  as follows: 

(A4.3) 

In order to calculate the derivative of the phase shifts we use the explicit expression 
for the ID 1 matrix given by Butler [23] 

t I  = -fiei6' sin(6,) (A4.4) 

obtaining 

Now, we can use the expression of Johnson el ~l [38] to evaluate the functional 
derivative of 1-' with respect to the potential V (  z), namely 

or, using the explicit expression of Zl ( r ,  E) 1241, for I z I  > rm, 

and, then from ( A 4 4  and (A4.7) 

(A4.6) 

(A4.8) 

Equation (2.18) can be obtained easily now. In the ID case one has to divide both 
sides of (A4.8) by n, integrate over the energy up to the Fermi level and use the 
expression (3.4) for the charge density; for the inhomogeneous jellium it is necessary 
to put in (A4.8) E = k2, multiply by the factor k(k$ - k*)/&r), integrate up to the 
Fermi momentum and use the expression (3.17) for the jellium charge density. 
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Appendix S. The magnetic coupling in the parallel and antiparallel configurations 

In a quite general way the configurations of the two-interface models in which the 
magnetic moments of two adjacent layers are parallel ( T I )  or antiparallel (TJ), as 
shown in figures 7 and 9, respectively, can be described by the potentials 

V:")(z) = V(z)  - (A5.k) 

VjTt'(z) = V ( z )  + AV('T)(z) (A5.lb) 

~ ( T " ( s )  = V ( z )  - AV(T1)(z) (A5.k) 

~ ( " ' ( z )  = V(z)  + AV(rl)(z)  (As. Id) 

= f(z) (&.le) 

AV(T')(z) = f(z)[@(-z) - @(z)] ( A w l  

where, for instance, V,(T')(z) means the spin-up potential in the antiparallel 
configuration, V(z)  is the average between up and down potentials (these must 
have the same average in both configurations) and f(r)  is an even function. Io 
order to obtain the potential wells defined in section 4.2, and plotted, respectively, in 
figures 7 and 9, we must put 

V ( z ) =  v , O ( z + L / 2 ) O ( L / 2 - z )  (M-2) 

f (z )  = ,A[@(-z I ('45.3) - L / Z )  + O(Z - L / Z ) ] .  

We develop a perturbative theory in which the system with the averaged potential 
V(z) is the reference and AV(lr)(z)  or AV(T')(z) is the perturbation. In order to 
do this we start from the LippmanSchwinger equation for the unperturbed Green 
function G [39] 

G = Go + G,VG (A5.4) 

(Go is, as usual, the freeelectron Green function). After some straightfonvard 
algebra, it is possible to obtain an exact expression for AG, the variation of the 
Green function when the external potential is increased by A V  

From this equation we can write the expressions for the variations of both the spin-up 
and spin-down Green functions 

0 2  

AG, = X ( - B ) * G  
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where B is GAV(7I) or GAV(TI), depending on the configuration considered. From 
(A5.6), the following operators related to the charge density and the magnetization 
can be obtained 

E Bruno and B L Gyo@j 

m 

A N  = A G ~  + AG, = G, + G] - ZG = 2 Pn G ('45.7) 

(A54  

n=l  

W 
A4 = AG, - AG, = GI - G, = -2.c B z n + l G .  

n=O 

Using the force rule (4.5) as we did in section 4, we obtain for the potentials 
given by (A5.2) and (A5.3) the total 11 force in the antiparallel configuration, 

f ( f "  = 45[n(" ) ( -L /2 )  + n ( l ' ) ( L / 2 ) ]  - $ A [ - m ( [ " ( - L / 2 )  + m(Tl)(L/Z)] 

where L is the separation between the interfaces. Now, because the symmetry 
requires n(fl)(z) to be an even function and 1n(T1'(z) odd, 

f ( T ' )  = VOn(Tl)(L/2) - iAm(l')(L/2) ('45.9) 
so, using (4.15), we have for the difference between the forces in the two 
configurations 

f(t7) - f't" = VO[n('[)(L/2) - n'7"(L/2)] - ' A [ ? n ( l [ ) ( L / Z )  2 - ? n ( l 1 ) ( L / 2 ) ] ,  
('45.10) 

In the L -03 limit n ( l I ) ( L / 2 )  = n(1 ' ) (L /2 )  and d T l ) ( L / 2 )  = - ~ n ( f l ) ( L / Z ) ,  so 
that g( L / 2 )  is zero. We have to study the asymptotic behaviour for large separations 
of g ( L / 2 ) .  Let us start by considering the operator AN(l1) -AN([IJ.  From (A5.7) 
we find that 

The nth term on the RHS of equation (A5.11) is proportional to A*" and, at L / 2 ,  
has the integral representation 

x AV( I I ) (  z2=) - A ~ ( 1  I ) ( z l )  G( Z, , zz  )A v(11 )(r2) . . . c ( ~ ~ , , = ~ ,  z z n )  

X A v ( l ' ) ( ~ i r a ) l G ( ~ z n ,  L / z ) .  (A5.12) 

The effect of the operators A V  is to break up the domain of integration into two 
subsets, the intervals (-m,-L/Z) and (L/Z,+co) .  From a careful analysis we 
see that only those integrals for which an odd number of xi run in the interval 
(-m,-L/Z) do not cancel each other. Thus each addendum involves at least two 
Green functions G ( Z ~ , Z ; + ~ )  with Izi+l - x;1 > L throughout all the domain of 
integration, and, because 

~ ( z , , z ~ )  = exp(filz, - zzl) 
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all the contribution to AN('?) - AN(Tl) must go to zero as e x p ( - Z a L )  when 
L -+ 00. Using the same analyses, we find that also the operator M(fT) - M(TI) has 
the above exponential asymptotic behaviour. Now, since g( L / Z )  is given by 

g(L/2) = / dEq(E ,  EF) {V,[AN(")(L/2) - AN(T')(L/Z)] + $A[M('T)(L/2) 

- M(T1)(L/2)]} (As. 13) 

(the kernel q( E, EF) has to be chosen according to the theory developed in section 
3), it follows that g( L / 2 )  must exhibit the Same exponential decay, and from equation 
(A5.10) we have a relation involving the difference between the forces in the parallel 
and antiparallel configurations, 

(A5.14) 

After integrating over L equation (A5.14), using equations (4.8) and (4.1&), we find 
finally 

f(rT)(L) - fcr')(L) + Am(TT)(L) - e x p ( - 2 O L ) .  

c $ ' ) ( L )  - s & ~ ' ) ( L )  -ZS$"(L) - e x p ( - z O ~ ) .  (A5.15) 

We note that even in the case of smooth potentials, like those described in 
appendix 6, for large enough separations, the operators A V  are zero in a region of 
length L - 1, t being the range of the potential, and then all the results quoted above 
remain valid if L is substituted by L - t. 

Appendix 6. 
potential 

If the distance between the interfaces is large enough, the only effect of an increase 
of the separation L is a rigid shift of the potential, i.e. 

In this case it is easy to show, expanding in Bylor series around (r; L), that 
a V ( r ) / a L  = -fsgn(z)dV(r)/dz. (A6.2) 

If we further assume that the potential depends only on z and is symmetric with 
respect to z = 0, from (2.19) and (3.18) it is possible to obtain a simple expression 
for the ariation of the valence part of the grand potential. In fact, we have, for the 
three-dimensional jellium, 

Interfaceinterface forees for two interfaces with smooth external 

V ( r , y ,  z;  L + A L )  = V(+,y,z  -sgn(z).  A L / Z  L ) .  W . 1 )  

The inner integral can be evaluated by differentiating with respect to z the 
Schriidinger equation (3.16), multiplying it by the wavefunction and integrating over 
z from 0 to 00, obtaining, after integration by parts and reinsertion of the Same 
Schrodinger equation, 

l w d z  I@k(z)12V'(z) = [V(O) - k2]1(1)k(0)Iz - l(DL(0)l2 (A6.4) 

and then 
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Note added or proof. After we had submitted d e  present paper, we reeeived a preprint ty J Mathon, M 
Villeret and D M Edwards in which a formula for afi/aL h derived and discussed for the 'sandwich' 
geometry. This quantity is proportional to the interface-interfaoe interaction forces in our formalism (see 
equation (4.15)). The above paper has recently appeared [MI. 
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